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Abstract: Image segmentation involves partitioning of an image into distinct regions based on criteria such as 

color, texture, or shape, facilitating the focused analysis of relevant objects. Among the various approaches to 

image segmentation, clustering algorithms, particularly K-means, have gained prominence because of their 

efficacy in grouping similar pixels. However, these algorithms face challenges such as predetermining the 

number of regions and sensitivity to initial cluster centers. These issues often result in inconsistent 

segmentation. This paper proposes a novel color-based segmentation approach that utilizes density function 

mode detection to predict suitable cluster centroids, aiming to enhance the consistency and accuracy of 

segmentation results. As demonstrated by various tests, the proposed method has the potential to improve the 

analysis in numerous domains, including object detection, facial recognition, medical imaging and remote 

sensing.  
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Introduction 

 

Image segmentation is a basic technique in computer vision and image processing that involves 

partitioning a digital image into several segments or regions, each representing a different object or part of 

the image (Lei & Nandi, 2023). This process aims to simplify the representation of an image, making it 

easier to analyze and understand its content. In essence, image segmentation groups together pixels with 

similar characteristics, such as color, texture, or intensity, making it possible to identify and isolate specific 

objects or areas of interest in the image. 

 

Image segmentation is the basis for many applications that we encounter on a regular basis. In healthcare, 

for example, it facilitates medical imaging to diagnose diseases, detect tumors, or plan surgical 

interventions. In autonomous vehicles, image segmentation helps to recognize pedestrians, road signs, and 

other vehicles, contributing to safer navigation. In smartphone cameras, it enables portrait mode by 

separating the subject from the background. Security systems use it for facial recognition and object 

detection. Even in social media, image segmentation enables functions such as augmented reality filters and 

automatic tagging. These different applications show the versatility of image segmentation techniques, they 

are classified, by Siddiqui et al. (2022), into four general categories: thresholding, clustering, edge-based 

segmentation technique, and region-based segmentation as shown in Figure 1. 

 

Each of these techniques has its own strengths that make them particularly suitable for certain contexts 

and different performance criteria. Among these different approaches, cluster-based methods stand out due to 

their popularity and versatility. One of the most widely used clustering techniques in image segmentation is the 

K-means algorithm (MacQueen, 1967) that consists in partitioning the image pixels into a set of clusters, 

where each pixel is assigned to the cluster with the closest center according to the algorithm 1. 

http://www.isres.org/
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Figure 1. General classifications of the image segmentation technique(Siddiqui, 2022). 

 

Algorithm 1. K-means Algorithm for Image Segmentation 

Require: 

• I : Image, 

• K : number of clusters, 

• maxIter :maximum iterations. 

Ensure: 

• Segmented image with K clusters 

 

Initialize K cluster centers {c1, c2, ..., cK} randomly 

iter ← 0 

while not converged and iter < maxIter do for each pixel p in I do 

Assign p to nearest cluster center based on color or intensity 

for k ← 1 to K do 

Recalculate ck as the mean of all pixels, pi, in cluster k using 

iter ← iter + 1 

 

K-means algorithm is particularly effective for its simplicity and computational efficiency. These 

attributes, coupled with its ease of implementation, make it a preferred choice in many image segmentation 

applications, especially when combined with other prepossessing or post-processing techniques. However, 

the K-means algorithm also has limitations. It requires the number of clusters (K) to be specified in 

advance, which may not always be known. It is also sensitive to initial cluster center placement and may 

converge to local optima. Several variants of the K-means-based clustering algorithm have been tested to 

improve its performance and avoid these limitations, including integration with other techniques, improved 

initialization and convergence, and parallel and GPU-accelerated implementations. In this context, we 

propose a novel color-based segmentation approach that uses density function mode detection to predict 

the suitable initial cluster centroids for the K-means algorithm. After a review of related work in section 2, 

we introduce our novel color-based segmentation approach in section 3. We then analyze the results and 

discuss the implications of our findings in section 4. Finally, we conclude our study in section 5 by 

summarizing our findings and presenting our conclusive remarks. 

 

 

Related Work 
 

The effectiveness of the K-means algorithm in image segmentation has undergone significant enhancements 

through various innovations. Karbhari et al. (2018) proposed a GPU-accelerated parallel implementation of the 

K-means clustering algorithm for image segmentation, leveraging CUDA C on NVIDIA GPUs. This approach 

optimized performance by employing shared memory for efficient image data storage and constant memory for 

cluster data, reducing memory access latency and improving computational efficiency. This resulted in 

significant speedups in processing, with performance improvements ranging from 9x to 57x compared to 

the sequential version. Additionally, the approach scaled effectively as the number of clusters increased, 

further enhancing computational efficiency. Mashor(2000) introduced the moving k-means clustering 

algorithm, an innovative variant of the traditional k-means method that addresses several of its inherent 

limitations, including sensitivity to initial conditions and susceptibility to local optima.  
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While maintaining the core iterative process of assigning data points to the nearest centroid and updating 

centroids accordingly, the moving k-means algorithm introduces a key enhancement through its ”fitness” 

metric. This metric ensures that centroids are updated only if a cluster contains the minimum required 

number of data points, effectively reducing the algorithm’s vulnerability to poor initialization and local 

optima. As a result, the moving k-means algorithm becomes more robust to outliers and better at capturing 

complex data structures. These advantages make it particularly effective for segmenting microarray 

images, where spot sizes and intensities may vary against complex backgrounds, ensuring more accurate 

and reliable segmentation in challenging scenarios. The Optimized K-Means (OKM) algorithm (Siddiqui, 

2012) introduced several important innovations to improve image segmentation. Unlike K-means, which 

assigns a pixel to the cluster with the highest variance when it is equidistant from multiple clusters, OKM 

assigns a pixel to a cluster with fewer members or a lower fitness value to improve cluster coherence. 

OKM also fixes the ”dead center” problem encountered in previous algorithms, such as moving K-means, 

which cannot distinguish between empty clusters and those with zero variance within clusters. By 

implementing these improvements, OKM avoids trapping cluster centers at local minima, a common pitfall 

of K-means, and thus improves the overall quality of clustering. Experimental evaluations show that OKM 

produces more homogeneous and accurate image segmentation, and thus represents a significant advance in 

K-means-based algorithms for image processing tasks.  

 

Purohit et al. (2013) introduced another variant of K-means to enhance the initial centroid selection and the 

overall algorithm performance. This modified algorithm employs a systematic approach to select the initial 

centroids based on the Euclidean distance between the data points. By starting with the closest pairs and 

gradually forming sets, the algorithm improves the runtime efficiency and reduces the mean square error, 

demonstrating a particular efficacy with dense datasets. Additionally, Shunye (2013) proposed a novel 

clustering algorithm combining hierarchical clustering with k-means, leveraging a Huffman tree for initial 

centroid selection and the Manhattan distance for dissimilarity measurement. This method aims to 

improve cluster quality and stability compared with standard k-means, potentially avoiding local optima 

issues. Jose et al.(2014) introduced a tumor detection algorithm for MRI images that integrates k-means 

and fuzzy c-means clustering with machine learning classification. This hybrid approach enhances 

accuracy by segmenting distinct regions based on clustering, extracting features, and classifying tumor areas 

using classifiers, such as support vector machines or neural networks.  

 

Adhikari et al.(2015) proposed an algorithm that combines K-means and subtractive clustering to enhance 

the image segmentation accuracy and efficiency. Their method integrated partial contrast stretching, initial 

K-means clustering, and iterative refinement using subtractive clustering, followed by thresholding for the 

final segmentation. Zheng et al.(2018) introduced an adaptive K-means image segmentation method based 

on LAB color space, enhancing segmentation robustness by adapting K-means clustering to color and 

texture features. Shah et al.(2021) introduce a method that integrates the Bar et al.(2011) model into the k-

Means (KM) algorithm for image segmentation, addressing the limitations of standard k-Means, which 

often results in fragmented segments due to its focus solely on color quantization without considering pixel 

connectivity. The proposed Mumford–Shah k-Means (MS-KM) modifies the standard KM algorithm by 

incorporating a shape constraint derived from the Mumford–Shah model, optimizing both pixel similarity 

and segment shape using a modified distance measure. The method begins by selecting random cluster 

centroids and calculating image gradients. Each pixel is then assigned to a cluster based on a modified 

distance metric that accounts for both color similarity and boundary length, determined from the image 

gradient. Afterward, cluster centroids are recalculated by averaging the pixels in each segment. This process 

repeats until convergence, ensuring the optimization of both content similarity and segment shape. The 

approach effectively reduces fragmentation and produces smoother segment boundaries compared to 

standard k-Means while maintaining computational efficiency.  

 

Wisaeng et al.(2022) proposed a breast cancer detection method combining K-means++ clustering with 

cuckoo search optimization, demonstrating superior accuracy in segmenting mammogram images into tumor 

and non-tumor regions. This approach enhances detection accuracy while reducing noise and improving the 

clarity of segmented regions. It starts with preprocessing techniques, including color normalization and 

noise reduction, to enhance image quality. Then, K-Means++ initializes cluster centroids for image 

segmentation, and CSO further optimizes these centroids by mimicking the behavior of cuckoo birds 

laying eggs in host nests. The segmentation process is refined using mathematical morphology and OTSU’s 

thresholding to highlight cancerous regions more effectively. Kalaipriya et al. (2023) presented a 

segmentation and classification approach for human lung cancer detection, incorporating optimization 

strategies. This method begins with the preprocessing of medical images, followed by a hybrid 
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segmentation technique that combines an enhanced k-means clustering algorithm with random forest. For 

classification, an artificial neural network (ANN) is employed, improved through particle swarm 

optimization (PSO) to optimize parameters and refine feature selection.  

 

The proposed method in Braik et al.(2023), involves optimizing the k-means clustering algorithm using the 

white shark optimizer (WSO) to address the weakness of k-Means algorithm, which is its susceptibility to 

random initialization of the initial center. The k-Means serves as the starting point for the WSO, which 

then optimizes the final position. The WSO-based k-Means approach was evaluated on publicly available 

MRI brain tumor datasets and compared with the standard k-Means algorithm, fuzzy c-means (FCM), and 

other meta-heuristics. The results showed that the WSO-based k-Means outperformed the other algorithms 

in clustering performance. Kaur(2023) proposed an innovative hybrid image segmentation technique that 

integrates K-means clustering with two bio-inspired optimization methods: Particle Swarm Optimization 

(PSO) and the Firefly Algorithm (FA). The approach processes plant images using three comparative 

methods: basic K-means, K-means with PSO, and K-means with the Firefly algorithm, with the latter 

proving to be the most effective.  

 

The Firefly algorithm, inspired by the flashing behavior of fireflies and their attraction mechanisms, 

addresses K-means’ tendency to get stuck in local optima by optimizing centroid positions and discovering 

global solutions through improved exploration. This hybrid method achieves up to 97% segmentation 

accuracy and superior correlation coefficients compared to traditional methods, making it highly valuable 

for applications in plant disease detection, medical imaging, and content-based image retrieval. Its success 

lies in combining the clustering efficiency of K-means with the global optimization strengths of the Firefly 

algorithm, leading to more reliable and precise image segmentation in various fields. Sabha et al.(2024) 

focused on determining the optimal value of K for K-means clustering in color segmentation. It utilizes 

the Gray Level Co-occurrence Matrix (GLCM) to retrieve correlated features and calculate the aggregate 

probability of their occurrence based on pixel pairings. The number K is identified as spikes in this 

correlation. The results show that this approach achieves high efficiency, with an accuracy of 98%. Khan 

et al. (2024) proposed a nonparametric K-means clustering approach (EAIS) designed to enhance image 

segmentation by automatically determining the number of clusters and their initialization.  

 

Unlike traditional clustering methods, which struggle with predefined segment numbers, EAIS adapts by 

utilizing five modules: deep image reconstruction for smoothing and reducing color channel variance, 

intra-histogram peak level detection for understanding pixel distributions, inter-histogram peak level 

association for linking similar clusters, mutual consensus-oriented cluster seeds merging to reduce 

redundancy and determine the optimal number of clusters, and morphological reconstruction-driven spatial 

post-processing to enhance spatial consistency within segments. The method employs image histograms 

to determine optimal initialization conditions and dynamically merges cluster seeds. Experimental results 

on the BSDS500 benchmark show that EAIS performs comparably or better than state-of-the-art methods, 

offering both high segmentation quality and computational efficiency. 

 

The k-means clustering algorithm remains one of the most widely used algorithms in the literature, and many 

authors have compared their new proposals to k-means during validation processes. In this section, we focus 

exclusively on work related to image segmentation. Ahmed et al.(2020) presented a structured and 

comprehensive review of the k-means algorithm, discussing its limitations and the latest advances aimed at 

improving its capabilities and applicability within the research community. In this paper, we present a novel 

approach based on density function mode detection to optimize and accurately determine the initial centroids for 

the k-means algorithm. By overcoming the challenges associated with the selection of the initial centroids, 

our method aims to improve the efficiency and accuracy of the k-means clustering algorithm. This 

improvement leads to the identification of optimal starting points, resulting in more precise and reliable 

segmentation results. 

 

 

Method 

 

Our proposed image segmentation method improves the standard K-means clustering approach by integrating 

density function mode detection to optimize the selection of initial centroids. The procedure is outlined as 

follows: 

 

1. First, the image is loaded and converted into a numerical array, where the pixel values are 

separated into red, green, and blue (RGB) channels. For each channel, we estimate the pixel intensity 
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distribution using kernel density estimation (KDE), which is given by the equation 1:  

 
 

where n is the number of data points (pixels), d is the dimensionality (3 for the RGB color space), h is the 

bandwidth parameter, xi represents the data points, and K is the kernel function. Common kernel choices 

include the Gaussian kernel, Epanechnikov kernel, and others. In our method, we use the Gaussian kernel, 

defined by equation 2 due to its smoothness properties and its ability to model data distributions effectively. 

 

        (2) 

 

Ultimately, the choice of kernel should balance smoothness and computational efficiency based on the 

application. Another important parameter is the bandwidth(h), which controls the width of the kernel and 

thus the smoothness of the estimated density function. A small bandwidth leads to a more sensitive 

estimation, capturing finer details but potentially overfitting the data, while a large bandwidth results in a 

smoother estimate that may overlook subtle variations in the data. In practice, bandwidth selection is often 

done via cross-validation or heuristics such as Silverman’s rule of thumb, which provides an optimal 

bandwidth for Gaussian kernels under certain assumptions. Our method uses Silverman’s rule of thumb to 

determine the bandwidth, balancing sensitivity and generalization to avoid overfitting or underfitting the 

data. 

 

The density function obtained from KDE helps us understand the distribution of colors in the image. This 

step is critical for identifying areas with higher data concentration, which correspond to regions with 

higher pixel intensity or feature density. The kernel function smooths the data distribution, providing a 

continuous estimate of the underlying structure. Proper selection of both the kernel function and bandwidth 

is essential for accurate density estimation, which in turn allows for more reliable detection of dense areas 

vital for selecting suitable initial centroids in the K-means algorithm. 

 

After estimating the density function for each color channel, we identify the prominent peaks (modes) 

representing significant pixel intensity levels. These 1D modes from each channel are then combined into 

3D modes, forming a set of RGB color combinations representing the dominant colors in the image 

 

The identified 3D modes serve as the initial centroids for the K-means clustering algorithm. This step 

ensures that the algorithm selects the optimal initial centroids in a way that avoids local maxima and 

ensures a better distribution of centroids across the dataset, leading to more accurate and effective 

clustering. 

 

2. The algorithm groups the image pixels based on color similarity. To ensure robustness, clusters 

with pixel counts below a computed threshold are discarded. This threshold is calculated using the 

interquartile range (IQR) method, ensuring that only significant clusters contribute to the final 

segmentation. 

 

3. The remaining clusters’ centroids are used for the final K-means clustering step. The result is a 

segmented image where each pixel is assigned the color of its respective cluster centroid. The method 

effectively prevents the algorithm from converging to local minima by initializing centroids based on data-

driven mode estimation, improving the segmentation quality. 

 

 

Results and Discussion 
 

In order to verify the efficiency and feasibility of the proposed algorithm, we tested it on the image used in  

Chowdhury et al.(2016), shown in Figure 2a. This benchmark image allows an initial comparison with 

previously published approaches and a direct visual assessment of the segmentation quality between the original 

image and its segmented counterpart. In our experiment, the KDE–based initialization automatically selected 

five significant color clusters, which were then refined by K-means.  Visual inspection of Figure 2b 

shows that the method faithfully preserves the main structures of the scene while producing compact and 

homogeneous regions. Most object boundaries are sharply delineated and the background is strongly simplified, 
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confirming the ability of the proposed unsupervised algorithm to extract meaningful regions without any prior 

knowledge of the number or location of the segments 

 

 
                          (a) Original picture                                                      (b) Segmented picture 

Figure 2. Image used in the experiments 

 

As a second experiment, we considered the synthetic ”tricolor” image composed of three partially 

overlapping colored disks (Figure 3a). This image is interesting because it contains a small number of 

well–separated colors together with mixed regions created by the overlaps and a textured background. The 

proposed KDE–based procedure automatically selected five significant color clusters, which K-means then 

refined (Figure 3b).  

 

 

 
(a) Original picture                                                             (b) Segmented picture 

Figure 3. Tricolor image 

 

 
(b) Original picture                                                                       (b) Segmented picture 

Figure 4. Pathological brain image 
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The resulting segmentation clearly separates the three primary disks, the orange overlap region, and the 

background. In particular, the transparency grid present in the original image is almost completely removed, 

and the contours of the disks remain smooth and well localized, illustrating the ability of the method to recover 

both pure and mixed regions from multimodal color distributions. We also evaluated the proposed approach on 

a pathological brain slice containing a bright intra-cranial lesion (Figure 4a). The global gray-level 

distribution is strongly skewed, with three main modes corresponding to the dark background, the normal 

brain parenchyma, and very bright structures (bone and hyperdense lesion). From the estimated density 

functions, the KDE–based initialization retained two dominant clusters, which were then refined by K-

means. 

 

As illustrated in Figure 4b, the resulting segmentation succeeds in isolating the high-intensity structures (skull 

and lesion) from the rest of the brain tissue, while still providing a coherent partition of the intracranial 

region. This experiment suggests that the method can enhance the visual contrast between normal and 

abnormal regions without requiring any prior information about the lesion 

 

 

Conclusion  
 

In this work, we proposed an unsupervised color-based segmentation method that exploits kernel density 

estimation to detect the dominant modes of the RGB distributions and uses these modes as data-driven initial 

centroids for the K-means algorithm, thereby reducing the sensitivity to initialization and discarding 

insignificant clusters. Experiments on a natural scene, a synthetic tricolor image and pathological brain slices 

show that the approach preserves the main structures while producing compact and homogeneous regions, 

accurately separates pure and mixed color areas in multimodal distributions and yields coherent partitions on 

low-contrast medical images, where high-intensity abnormalities are clearly emphasized. Future research will 

focus on extending the framework to other color spaces and multimodal data (e.g., RGB–depth or multispectral 

images), integrating spatial regularization to further suppress noise and small isolated regions, conducting large-

scale comparisons with state-of-the-art, including deep learning–based segmentation models, and adapting the 

method to interactive or semi-supervised scenarios in which limited user input can guide the segmentation 

process. 
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